
Clinical Laboratory HEMATOLOGY

Fourth Edition

Shirlyn McKenzie | Kristin Landis-Piwowar | Lynne Williams

Fourth Edition

Clinical Laboratory Hematology

Shirlyn B. McKenzie, PhD, MLS(ASCP)^{CM}, SH(ASCP)^{CM}

Medical Laboratory Sciences, Department of Health Sciences, School of Health Professions UT Health San Antonio

Kristin Landis-Piwowar, PhD, MLS(ASCP)^{CM}

Clinical and Diagnostic Sciences, School of Health Sciences Oakland University

J. Lynne Williams, PhD, MT(ASCP)

Clinical and Diagnostic Sciences, School of Health Sciences Oakland University

Courseware Portfolio Manager, Health Sciences: John Goucher Editorial Assistant: Cara Schaurer Managing Content Producer: Melissa Bashe Content Producer: Michael Giacobbe Design Coordinator: Mary Siener Vice President of Sales and Marketing: David Gesell Vice President, Director of Marketing: Brad Parkins Director, Digital Studio: Amy Peltier Digital Project Manager: Ellen Viganola Full-Service Project Management and Composition: Pearson CSC Full-Service Project Manager: Pearson CSC, Dan Knott Manufacturing Buyer: Maura Zaldivar-Garcia, LSC Communications, Inc. Cover Designer: Pearson CSC

Copyright © **2020 by Pearson.** All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned. com/permissions/

Pearson[®] is a registered trademark of Pearson plc

Notice: Care has been taken to confirm the accuracy of information presented in this book. The authors, editors, and the publisher, however, cannot accept any responsibility for errors or omissions or for consequences from application of the information in this book and make no warranty, express or implied, with respect to its contents.

Library of Congress Cataloging-in-Publication Data

Names: McKenzie, Shirlyn B., author. | Landis-Piwowar, Kristin, author. | Williams, Joanne Lynne, 1949- author.

Title: Clinical laboratory hematology / Shirlyn B. McKenzie, Kristin

Landis-Piwowar, J. Lynne Williams.

Other titles: Pearson clinical laboratory science series.

Description: Fourth edition. | Hoboken : Pearson, [2020] | Series: Pearson's clinical laboratory science series | Includes bibliographical references and index.

Identifiers: LCCN 2019010608 | ISBN 9780134709390 | ISBN 013470939X

Subjects: | MESH: Clinical Laboratory Techniques | Hematology—methods | Hematologic Diseases—diagnosis | Hematopoietic System—physiology

Classification: LCC RB45 | NLM WH 25 | DDC 616.1/5075—dc23 LC record available at https://lccn.loc.gov/2019010608

To my family, the wind beneath my wings, Gary, Scott, Shawn, Belynda, and Dora; my special grandchildren Lauren, Kristen, Weston, Waylon, and Wyatt; to the memory of my parents, George and Helen Olson.

-Shirlyn B. McKenzie

To Theron and Kaia, you sustain my every breath and to Todd, you are my rock. —Kristin R. Landis-Piwowar

For my mother, Mary Williams, who gave her children roots as well as wings; for Lee, Laurie, Roger, and Richard, who sustain my roots; for Dulaney, Corie, Chris, Ava, and Holden, whom I love as my own; and to the memory of my father, David Williams. —J. Lynne Williams This page intentionally left blank

Contents

Foreword Preface	xvii xviii
Section One	
Introduction to Hematology	1
1 Introduction	2
Overview	3
Introduction	3
Composition of Blood	4
Reference Intervals for Blood Cell Concentration	4
Hemostasis	5
Blood Component Therapy	5
Investigation of a Hematologic Problem	6
The Value of Laboratory Testing	6
Summary • Review Questions • References	
2 Cellular Homeostasis	9
Overview	10
Introduction	11
Review of Cell Structure	11
Cell Membrane	11
Cytoplasm	12
Nucleus	13
Review of the Flow of Genetic Information	13
DNA Replication	13
Transcription	14
Translation	14
Protein Degradation	15
Tissue Homeostasis: Proliferation, Differentiation,	. –
and Apoptosis	15
Proliferation: The Cell Cycle	16
Differentiation	19
Apoptosis	20
Abnormal Tissue Homeostasis and Cancer Summary • Review Questions • References	23
Section Two	

3	Structure and Function of Hematopoietic Organs	28
Overv	view	29
Introc	luction	29

Development of Hematopoiesis	30
Hematopoietic Tissue	30
Bone Marrow	30
Thymus	34
Spleen	35
Lymph Nodes	38
Summary • Review Questions • References	

4 Hematopoiesis

43 43 44 44
44
44
52
57
59
61
61

5 The Erythrocyte

66

42

Overview	67
Introduction	68
Erythropoiesis and Red Blood Cell Maturation	68
Erythroid Progenitor Cells	68
Erythroid-Maturing Cells	68
Characteristics of Cell Maturation	69
Erythroblastic Islands	72
Erythrocyte Membrane	72
Membrane Composition	72
Lipid Composition	73
Protein Composition	74
Membrane Permeability	76
Erythrocyte Metabolism	77
Glycolytic Pathway	77
Hexose Monophosphate (HMP) Shunt	77
Methemoglobin Reductase Pathway	78
Rapoport-Luebering Shunt	78
Erythrocyte Kinetics	80
Erythrocyte Concentration	80
Regulation of Erythrocyte Production	80
Erythrocyte Destruction	82
Summary • Review Questions • References	

6 Hemoglobin	87
Overview	89
Introduction	89
Hemoglobin Structure	89
Hemoglobin Synthesis	90
Heme	90
Globin Chain Synthesis	91
Regulation of Hemoglobin Synthesis	94
Ontogeny of Hemoglobin	95
Embryonic Hemoglobins	95
Fetal Hemoglobin	95
Adult Hemoglobins	95
Glycosylated Hemoglobin	96
Hemoglobin Function	96
Oxygen Transport	96
Carbon Dioxide Transport	100
Nitric Oxide and Hemoglobin	101
Artificial Oxygen Carriers	101
Hemoglobin Catabolism	102
Extravascular Destruction	102
Intravascular Destruction	103
Acquired Nonfunctional Hemoglobins	104
Methemoglobin	104
Sulfhemoglobin	105
Carboxyhemoglobin	106
Summary • Review Questions • References	

7 Granulocytes and Monocytes

110

126

Overview
Introduction
Granulopoiesis and Monocytopoiesis
Leukocyte Concentration in the Peripheral Blood
Leukocyte Surface Markers
Leukocyte Function
Neutrophils
Differentiation, Maturation, and Morphology
Distribution, Concentration, and Kinetics
Function
Eosinophils
Differentiation, Maturation, and Morphology
Distribution, Concentration, and Kinetics
Function
Basophils
Differentiation, Maturation, and Morphology
Distribution, Concentration, and Kinetics
Function
Monocytes
Differentiation, Maturation, and Morphology
Distribution, Concentration, and Kinetics
Function
Summary • Review Questions • References

8 Lymphocytes	138
Overview	140
Introduction	140
Lymphopoiesis	140
Ontogeny of Lymphopoiesis	140
Transcriptional Regulation of Lymphopoiesis	141
Cytokines in Lymphopoiesis	141
Antigen-Dependent and -Independent	
Lymphopoiesis	141
Mature Lymphocytes	142
Lineage Differentiation	142
B Lymphocytes	143
T Lymphocytes	147
Natural Killer Cells	150
Natural Killer T (NKT) Cells	150
Lymphocyte Identification and Morphology	151
Morphologic Classification of Immature Lymphocytes	151
Morphology of Activated Lymphocytes	153
Lymphocyte Distribution, Concentration, and Kinetics	154
Lymphocyte Function	154
B Lymphocytes (Humoral Immunity)	155
T Lymphocytes (Cell-Mediated Immunity)	156
Natural Killer Cells	157
Adhesion Molecules of the Adaptive	
Immune Response	158
Aging and Lymphocyte Function	159
Lymphocyte Metabolism	159
Summary • Review Questions • References	

163
163

Overview	164
Introduction	164
Megakaryocytes	165
Megakaryopoiesis	165
Thrombopoiesis	169
Peripheral Blood Platelets	169
Platelet Morphology	169
Quantitative Platelet Evaluation	170
Platelet Function	170
Summary • Review Questions • References	

10 The Complete Blood Count and Peripheral Blood Smear Evaluation 174

Overview	176
Introduction	176
Pre-Examination Phase of the CBC	177
Examination Phase of the CBC	177
Automated Results	177
The Peripheral Blood Smear	181
Clinical Laboratory Professional's Review	
of CBC Data	193

Post-Examination Phase of the CBC	
Physiologic Variation in Hematologic Parameters	194
CBC Variations in Newborns and Children	194
CBC Variations Between Ethnic Groups and Sexes, in Elderly People, and	
by Geographic Location	194
Summary • Review Questions • References	

Section Three

The Anemias

11 Introduction to Anemia	200
Overview	202
Introduction	202
How Anemia Develops	202
Interpretation of Abnormal Hemoglobin	
Concentrations	203
Adaptations to Anemia	203
Increase in Oxygenated Blood Flow	204
Increase in Oxygen Utilization by Tissue	204
Diagnosis of Anemia	204
History	204
Clinical Presentation	204
Laboratory Evaluation	206
Classification of Anemias	211
Morphologic Classification	211
Functional Classification	213
Classification Using the Red Cell Distribution Width	218
Laboratory Testing Schemas for Anemia Diagnosis	218
Summary • Review Questions • References	

Anemias of Disordered Regulation of Iron Metabolism and Heme **Synthesis**

Synthesis	224
Overview	226
Introduction	227
Iron Metabolism	227
Distribution	228
Absorption	228
Transport	230
Storage	232
Physiological Regulation of Iron Balance	233
Iron Requirements	238
Laboratory Assessment of Iron	238
Iron Studies	238
Iron-Deficiency Anemia	240
Historical Aspects	240
Etiology	240
Pathophysiology	241
Clinical Presentation	241

Laboratory Evaluation	242
Therapy	245
Anemia of Chronic Disease	245
Etiology	245
Pathophysiology	245
Clinical Presentation	246
Laboratory Evaluation	246
Therapy	247
Iron Refractory Iron-Deficiency Anemia (Irida)	247
Pathophysiology	247
Clinical Presentation	247
Laboratory Evaluation	247
Therapy	248
Functional Iron Deficiency (Fid)	248
Etiology	248
Laboratory Evaluation	248
Therapy	248
Anemias Associated with Abnormal Heme Synthesis	248
Sideroblastic Anemias	248
Therapy	253
Hemochromatosis	253
Hereditary Hemochromatosis	253
Secondary Hemochromatosis	255
Treatment	255
Porphyrias	255
Etiology	255
Pathophysiology	256
Clinical Presentation	258
Laboratory Evaluation	258
Prognosis and Therapy	258
Summary • Review Questions • References	

Hemoglobinopathies: Qualitative Defects

Overview	267
Introduction	267
Structural Hemoglobin Variants	268
Identification of Hemoglobin Variants	268
Methods of Analysis	269
Nomenclature	270
Pathophysiology	271
Sickle Cell Anemia	271
Pathophysiology	271
Clinical Presentation	273
Laboratory Evaluation	276
Therapy	277
Sickle Cell Trait	278
Other Sickling Disorders	278
Hemoglobin C Disease	279
Hemoglobin S/C Disease	279
Hemoglobin D	280
Hemoglobin E	281
U U U U U U U U U U U U U U U U U U U	

viii Contents

Unstable Hemoglobin Variants	
Pathophysiology	281
Clinical Presentation	282
Laboratory Evaluation	282
Therapy	283
Hemoglobin Variants With Altered Oxygen Affinity	
Hemoglobin Variants with Increased Oxygen Affinity	283
Hemoglobin Variants with Decreased	
Oxygen Affinity	283
Methemoglobinemias	284
Summary • Review Questions • References	

Thalassemia

Overview	291
Introduction	
Thalassemia versus Hemoglobinopathy	292
Types of Thalassemia	292
Genetic Defects in Thalassemia	293
Pathophysiology	293
Clinical Presentation	294
Laboratory Evaluation	295
Treatment	295
α-Thalassemia	296
General Considerations	296
α -Thalassemia Major (α^0/α^0 or α -thal-1/ α -thal-1); Hydrops Fetalis	298
Hemoglobin H Disease (α^0/α^+ or α -thal-1/ α -thal-2	298
α -Thalassemia Minor (α^+/α^+ or α -thal-2/ α -thal-2; α^0/α or α -thal-1/normal)	300
Silent Carrier ($\alpha + / \alpha$ or α -thal-2/normal)	301
β -Thalassemia	301
General Considerations	301
β -Thalassemia Major ($\beta^0/\beta^0, \beta^0/\beta^+, \beta^+/\beta^+$)	303
β -Thalassemia Minor (β^0/β or β^+/β)	306
β -Thalassemia Intermedia ($\beta^+/\beta^+, \beta^0/\beta^+, \beta^0/\beta$)	307
β -Thalassemia Minima (β^{SC}/β)	307
Other Thalassemias and Thalassemia-Like Conditions	308
$\delta \beta$ Thalassemia	308
$\gamma\delta\beta$ Thalassemia	308
Hemoglobin Constant Spring	308
Hereditary Persistence of Fetal Hemoglobin (HPFH)	309
Hemoglobin Lepore	310
Combination Disorders	311
Differential Diagnosis of Thalassemia	313
Summary • Review Questions • References	

15	Megaloblastic and Nonmegaloblastic	
		319

Overview	321
Introduction	321

Megaloblastic Anemia	
Clinical Presentation	323
Laboratory Evaluation	324
Folate	327
Cobalamin (Vitamin B ₁₂)	331
Other Megaloblastic Anemias	338
Macrocytic Anemia Without Megaloblastosis	340
Alcoholism	340
Liver Disease	341
Stimulated Erythropoiesis	342
Hypothyroidism	2.40
Trypothyroldisin	342

Hypoproliferative Anemias

	240
Overview	348
Introduction	348
Aplastic Anemia	348
Epidemiology	348
Pathophysiology	348
Classification and Etiology	349
Clinical Presentation	352
Laboratory Evaluation	353
Prognosis and Therapy	354
Differentiation of Aplastic Anemia from other	
Causes of Pancytopenia	355
Pure Red Cell Aplasia	
Acute Acquired Pure Red Cell Aplasia	356
Chronic Acquired Pure Red Cell Aplasia	357
Diamond-Blackfan Syndrome	357
Other Hypoproliferative Anemias	
Renal Disease	358
Endocrine Abnormalities	359
Summary • Review Questions • References	

Hemolytic Anemia: Membrane Defects

Overview	366
Introduction	366
Skeletal Protein Abnormalities	366
Vertical Interactions	366
Horizontal Interactions	366
Lipid Composition Abnormalities	366
Hereditary Spherocytosis	367
Pathophysiology	368
Clinical Presentation	369
Laboratory Evaluation	369
Identification of Deficient/Defective	
Membrane Protein	371
Therapy	371

Hereditary Elliptocytosis	371
Pathophysiology	371
Clinical Presentation	372
Laboratory Evaluation	372
Therapy	373
Hereditary Pyropoikilocytosis (HPP)	373
Pathophysiology	373
Clinical Presentation	373
Laboratory Evaluation	374
Therapy	374
Hereditary Stomatocytosis Syndromes	374
Pathophysiology	375
Laboratory Evaluation	375
Therapy	375
Abnormal Membrane Lipid Composition:	
Acanthocytosis	375
Spur Cell Anemia	376
Abetalipoproteinemia (Hereditary	
Acanthocytosis)	376
Lecithin-Cholesterol Acyl Transferase (LCAT)	
Deficiency	377
Rare Forms	377
Paroxysmal Nocturnal Hemoglobinuria (PNH)	377
Pathophysiology	377
Clinical Presentation	378
Laboratory Evaluation	378
Therapy	379
Summary • Review Questions • References	

Hemolytic Anemia: Enzyme Deficiencies

Overview	385
Introduction	385
Hexose Monophosphate Shunt	385
Glycolytic Pathway	385
Clinical and Laboratory Evaluation in Erythrocyte	
Enzyme Deficiencies	386
Diagnosis	387
Glucose-6-Phosphate Dehydrogenase Deficiency	387
Etiology	387
Pathophysiology	387
G6PD Variants	389
Females with G6PD Deficiency	389
Clinical Presentation	390
Laboratory Evaluation	391
Differential Diagnosis	392
Therapy	392
Other Defects and Deficiencies of the HMP Shunt	
and GSH Metabolism	393
Pyruvate Kinase (Pk) Deficiency	393
Etiology	393
Pathophysiology	393

Clinical Presentation	393
Laboratory Evaluation	394
Therapy	394
Other Enzyme Deficiencies in the Glycolytic Pathway	394
Abnormal Erythrocyte Nucleotide Metabolism	395
Summary • Review Questions • References	

Hemolytic Anemia: Immune Anemias

Overview	401
Introduction	401
Classification Of Immune Hemolytic Anemias	401
Sites And Factors That Affect Hemolysis	403
Mechanisms Of Hemolysis	404
IgG-Mediated Hemolysis	404
Complement-Mediated Hemolysis	404
IgM-Mediated Hemolysis	405
Laboratory Identification of Sensitized Red Cells	405
Direct Antiglobulin Test	406
Indirect Antiglobulin Test	406
Negative DAT in AIHA	407
Positive DAT in Normal Individuals	407
Autoimmune Hemolytic Anemias (AIHA)	407
Warm Autoimmune Hemolytic Anemia	408
Laboratory Evaluation	409
Cold Autoimmune Hemolytic Anemia	411
Paroxysmal Cold Hemoglobinuria	414
Mixed-Type AIHA	415
Drug-Induced Hemolytic Anemias	415
Alloimmune Hemolytic Anemia	417
Hemolytic Transfusion Reactions	418
Hemolytic Disease of the Fetus	
and Newborn (HDFN)	419
Summary • Review Questions • References	

Hemolytic Anemia: Nonimmune Defects Overview Introduction Hemolytic Anemia Caused by Physical Injury to the Erythrocyte Thrombotic Microangiopathic Anemia (TMA)

Other Erythrocyte Physical Trauma Resulting in Hemolytic Anemia	439
Hemolytic Anemias Caused by Antagonists in	
the Blood	440
Infectious Agents	440
Animal Venoms	442
Chemicals and Drugs	442
Summary • Review Questions • References	

Section Four

Nonmalignant Disorders of Leukocytes

21	Nonmalignant Disorders of Leukocytes: Granulocytes	
	and Monocytes	450
Overv	iew	452
Introd	uction	452
Neutro	ophil Disorders	453
Qu	antitative Disorders	453
Qu	alitative or Morphologic Abnormalities	458
Eosinc	phil Disorders	464
No	nclonal (Reactive) Hypereosinophilia	464
Clo	nal (Neoplastic) Hypereosinophilia	465
Idio	ppathic Hypereosinophilia	465
Basop	hil and Mast Cell Disorders	466
Mono	cyte/Macrophage Disorders	466
Qu	antitative Disorders	466
Qu	alitative Disorders	467
Sun	nmary • Review Questions • References	

Nonmalignant Lymphocyte Disorders

Overview	475
Introduction	475
Lymphocytosis	475
Infectious Mononucleosis	476
Toxoplasmosis	479
Cytomegalovirus	479
Bordetella Pertussis	480
Reactive Lymphocytosis	480
Plasmacytosis	481
Persistent Polyclonal B-Cell Lymphocytosis	481
Lymphocytopenia	482
Lymphocyte Sequestration and Destruction	482
Immune Deficiency Disorders	483
Summary • Review Questions • References	

Section Five

Neoplastic Hematologic Disorders

23	Introduction to Hematopoietic	400
	Neoplasms	496
Overv	iew	498
Introd	uction	498

Pathophysiology	499
Cancer Stem Cells	500
Molecular Basis of Cancer	500
Leukemogenesis	504
Epidemiology	505
Clinical Presentation	505
Laboratory Evaluation	506
Hematopoietic Neoplasm Classification	506
Laboratory Procedures for Diagnosing and	
Classifying Neoplasms	507
Cytochemical Analysis	508
Immunologic Analysis	508
Genetic Analysis	509
Prognosis and Treatment of Neoplastic Disorders	509
Prognosis	509
Treatment	510
Summary • Review Questions • References	

Myeloproliferative Neoplasms 517

Overview	519
Introduction	519
Classification	520
Pathophysiology	521
General Features	521
Chronic Myeloid Leukemia (CML)	522
Etiology and Pathophysiology	523
Clinical Presentation	525
Laboratory Evaluation	525
Terminal Phase	527
Therapy	528
Differential Diagnosis	529
Chronic Neutrophilic Leukemia (CNL)	530
Etiology and Pathophysiology	530
Clinical Presentation	530
Laboratory Evaluation	530
Therapy	531
Differential Diagnosis	531
Essential Thrombocythemia (ET)	531
Etiology and Pathophysiology	531
Clinical Presentation	532
Laboratory Evaluation	532
Prognosis and Therapy	534
Differential Diagnosis	534
Polycythemia Vera (PV)	535
Classification	535
Etiology and Pathophysiology	535
Clinical Presentation	537
Laboratory Evaluation	537
Prognosis and Therapy	538
Differential Diagnosis	539
Relative Polycythemia	539

Contents	xi

Primary Myelofibrosis (PMF)	540
Etiology and Pathophysiology	541
Clinical Presentation	542
Laboratory Evaluation	542
Prognosis and Therapy	544
Differential Diagnosis	544
Myeloproliferative Neoplasm, Unclassifiable (MPN, U)	545
Clonal Hypereosinophilia	545
Myeloid and Lymphoid Neoplasms Associated with Eosinophilia and <i>PDGFRA, PDGFRB,</i> or <i>FGFR1</i> Mutations	546
Chronic Eosinophilic Leukemia, Not Otherwise	040
Specified (CEL-NOS)	547
Idiopathic Hypereosinophilic Syndrome (I-HES)	548
Mast Cell Disease (Mastocytosis)	548
Summary • Review Questions • References	
25 Myelodysplastic Syndromes	555
Overview	557
Introduction	557
Pathophysiology	557
Cytogenetics, Epigenetics, and Single Gene	
Mutations	558
Proliferation Abnormalities	560
Incidence	560
Clinical Presentation	560
Laboratory Evaluation	560
Peripheral Blood	560
Bone Marrow	563
Molecular Diagnostics	564
Additional Laboratory Evaluation	565
Blast and Precursor Cell Classification	565
Myeloblasts	565
Promyelocytes	566
Ring Sideroblasts	566 567
Immunological Identification of Blasts Classification	567
Description of MDS Subgroups MDS with Single Lineage Dysplasia (MDS-SLD)	568 568
MDS with Single Lifeage Dysplasia (MDS-SLD)	569
MDS with Multilineage Dysplasia (MDS-MLD)	569
MDS with Excess Blasts (MDS-EB)	569
MDS with Isolated del(5q)	570
MDS, Unclassifiable (MDS-U)	570
Refractory Cytopenia of Childhood	570
Variables of MDS Subgroups	571
Hypoplastic MDS	571
MDS with Fibrosis	571
Therapy-Related Myelodysplasia	571
Differential Diagnosis	571
Prognosis	572

Therapy	573
Myelodysplastic/Myeloproliferative Neoplasms	
(MDS/MPNS)	574
Chronic Myelomonocytic Leukemia (CMML)	574
Atypical Chronic Myeloid Leukemia (aCML, BCR/ABL1 ⁻)	575
Juvenile Myelomonocytic Leukemia	575
MDS/MPN with Ring Sideroblasts and Thrombocytosis (MDS/MPN-RS-T)	576
Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable (MDS/MPN, U)	576
Summary • Review Questions • References	
Overview Introduction	585 585
Overview	585
Etiology And Pathophysiology	585
Laboratory Evaluation	585
Peripheral Blood	585
Bone Marrow	586
Other Laboratory Evaluation	587
Classification	587
Identification of Cell Lineage	587
WHO Classification of AML	591
Therapy	601
Summary • Review Questions • References	

27 Precursor Lymphoid Neoplasms 606

Overview	608
Introduction	608
Etiology and Pathophysiology	608
Clinical Presentation	608
Laboratory Evaluation	609
Peripheral Blood	609
Bone Marrow	610
Tissue Involvement	610
Other Laboratory Evaluation	611
Identification of Cell Lineage	611
Morphology and Cytochemistry	611
Terminal Deoxynucleotidyl Transferase (TdT)	611
Immunophenotyping	611
Cytogenetic Analysis	612
Molecular Analysis	612
WHO Classification	612
B Lymphoblastic Leukemia/Lymphoma	612
T Lymphoblastic Leukemia/Lymphoma	615
Acute Leukemias of Ambiguous Lineage	616
Natural Killer Cell Lymphoblastic	
Leukemia/Lymphoma	617
Therapy	617
Summary Review Questions References	

28 Mature Lymphoid Neoplasms	622			
Overview	624			
Introduction	624			
Etiology and Pathophysiology	624			
Acquired Genetic Factors				
Inherited Genetic Factors				
Environmental Factors	625			
Diagnosis and WHO Classification	625			
Laboratory Evaluation	625			
Prognosis	625			
Therapy	625			
Staging	626			
Mature B Cell Neoplasms	626			
Chronic Lymphocytic Leukemia/Small				
Lymphocytic Lymphoma	626			
B Cell Prolymphocytic Leukemia	628			
Hairy Cell Leukemia	628			
Follicular Lymphoma	629			
Mantle Cell Lymphoma (MCL)	630			
Extranodal Marginal Zone Lymphoma	(22			
of Mucosa-Associated Lymphoid Tissue	632 632			
Lymphoplasmacytic Lymphoma	633			
Diffuse Large B Cell Lymphoma Burkitt Lymphoma	634			
Burkitt Lymphoma Plasma Cell Neoplasms	634			
*	636			
Mature T and NK Cell Neoplasms	637			
Nodal T and NK Cell Lymphomas	638			
Extranodal T and NK Cell Lymphomas				
Leukemic T and NK Cell Lymphomas	639 640			
Hodgkin Lymphoma (HL)	040			
Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL)	640			
Classical Hodgkin Lymphoma (CHL)	640			
Summary • Review Questions • References				
29 Hematopoietic Stem Cell				
Transplantation	645			
1				
Overview	647			
Introduction	647			
Origin and Differentiation of Hematopoietic				
Stem Cells	647			
Sources of Hematopoietic Stem Cells and Types				
of Stem Cell Transplants	648			
Allogeneic Stem Cell Transplantation	648			
Autologous Stem Cell Transplantation	649			
Umbilical Cord Blood Stem Cell Transplantation	650			
Collection and Processing of Hematopoietic				
Stem Cells	650 651			
Bone Marrow				
Peripheral Blood	651			

Umbilical Cord Blood

Purging

Cryopreservation and Storage of Hematopoietic	
Stem Cells	652
Infusion of Hematopoietic Stem Cells	652
Quantitation of Hematopoietic Stem Cells	652
Determination of Mononuclear Cell Count	652
CD34 Enumeration by Flow Cytometry	652
Cell Culture for Colony Forming Units	653
Collection Target for Stem Cells	653
Hematopoietic Engraftment	654
Evidence of Initial Engraftment	654
Evidence of Long-Term Engraftment	654
Role of the Clinical Laboratory Professional	
in Stem Cell Transplantation	654
Graft-Versus-Host Disease and Graft-Versus-Leukemia	
Effect	655
Complications Associated with Stem Cell	
Transplantation	656
Early Complications	656
Late Complications	657
Increased Availability and Success of Stem Cell	
Transplantation	657
Gene Therapy	657
Summary • Review Questions • References	

Section Six

Body Fluids

30 Morphologic Analysis of Body Fluids in the Hematology Laboratory	664
Overview	666
Introduction	666
Types of Body Fluids	666
Serous Fluids	667
Cerebrospinal Fluid	668
Synovial Fluid	670
Bronchoalveolar Lavage (BAL)	670
Hematologic Analysis of Body Fluids	670
Specimen Collection and Handling	670
Physical Characteristics	671
Cell Counting	672
Nucleated Cell Differential	675
Analysis of Other Fluids	693
BAL Fluid	693
Amniotic Fluid Lamellar Body Counts	693
Semen Analysis	695
Summary • Review Questions • References	

Section Seven	
Hemostasis	703
31 Primary Hemostasis	704

Overview	706
Introduction	706
Role of the Vascular System	707
Structure of Blood Vessels	707
Functions of Blood Vessels in Hemostasis	709
Functions of Endothelial Cells	709
Platelets in Hemostasis	711
Platelet Structure	712
Platelet Functions	718
Physiologic Controls of Platelet Activation	710
and Aggregation	726
Summary • Review Questions • References	
32 Secondary Hemostasis	
and Fibrinolysis	731
2	
Overview	733
Introduction	733
The Coagulation Mechanism	734
Procoagulant Factors	734
Properties of the Blood Coagulation Factors	735
Mechanism of Action	737
Vitamin K-Dependent Coagulation Proteins	737
Structure of the Blood Coagulation Proteins	738
Coagulation Cascade	738
Complex Formation on Phospholipid Surfaces	738
The Intrinsic Pathway	738
The Extrinsic Pathway	744
The Common Pathway	745
Fibrinolytic System	749
Components of the Fibrinolytic System	749
Plasminogen (PLG) and Plasmin (PLN)	750
Activators of Fibrinolysis	751
Fibrin Degradation	752
Inhibitors of Fibrinolysis	753
Control of Hemostasis	755
Blood Flow	755
Liver Clearance	755
Positive Feedback Amplification	755
Negative Feedback Inhibition	755
Biochemical Inhibitors	755
Physiologic Hemostasis	760
The Tissue Factor Pathway	760
Basal Coagulation	761
Hemostasis in the Newborn	762
Summary • Review Questions • References	
33 Disorders of Primary Hemostasis	767

33	Disord	lers of	Primary	Hemos	tasis

```
Overview
Introduction
Diagnosis of Bleeding Disorders
   Clinical Manifestations of Primary Hemostasis
   Bleeding Disorders
```

Clinical Manifestations of Secondary Hemostasis	
Bleeding Disorders	770
Nonspecific Bleeding	770
Evaluation of a Patient with Abnormal Bleeding	770
Laboratory Evaluation of Abnormal Bleeding	771
Hereditary Vascular System Disorders	773
Acquired Vascular System Disorders	773
Purpura Resulting from Decreased Connective Tissue	773
Purpura Associated with Dysproteinemias	773
Purpura Resulting from Vasculitis	774
Miscellaneous Causes of Purpura	774
Quantitative Platelet Disorders	775
Thrombocytopenia	775
Thrombocytosis	785
Artifacts in the Quantitative Measurement	
of Platelets	786
Qualitative (Functional) Platelet Disorders	787
Hereditary Disorders of Platelet Function	787
Acquired Disorders of Platelet Function	792
Summary • Review Questions • References	

Disorders of Secondary Hemostasis 798

Overview	800
Introduction	800
Bleeding Characteristics	800
Laboratory Evaluation	801
Hereditary Disorders of Secondary Hemostasis	802
Autosomal Dominant Inheritance – von Willebrand	
Disease	802
X-Linked Recessive Disorders	807
Autosomal Recessive Disorders	812
Acquired Disorders of Hemostasis Associated	
with Bleeding	817
Common Bleeding Disorders in the Neonate	
Summary • Review Questions • References	

Thrombophilia

Overview	828
Introduction	828
Thrombus Formation	829
Arterial Thrombi	829
Venous Thrombi	830
Microparticles in Arterial and Venous Thrombosis	831
Thrombophilia	832
Hereditary Thrombophilia	833
Other Potential Genetic Risk Factors	839
Acquired Thrombohemorrhagic Conditions	841
Laboratory Testing in Patients with Suspected	
Thrombosis	853
Anticoagulant Therapy	854
Heparin	855
Oral Anticoagulants	856

xiv Contents

New Oral Anticoagulants (NOAC)/Direct Oral	
Anticoagulants (DOAC)	857
Thrombolytic Therapy	857
Antiplatelet Therapy	858
Summary • Review Questions • References	

Hemostasis: Laboratory Testing and Instrumentation

Overview	868
Introduction	869
Specimen Collection and Processing	869
Specimen Collection	869
Specimen Processing	871
Laboratory Investigation of Primary Hemostasis	871
Bleeding Time	871
Platelet Function Analyzers	872
Laboratory Investigation of Secondary Hemostasis	875
Screening Tests	875
Tests to Identify a Specific Factor Deficiency	877
Identification of Inhibitors	882
Laboratory Investigation of the Fibrinolytic System	884
D-Dimer	884
Fibrin Degradation Products	885
Euglobulin Clot Lysis	885
α_2 -Antiplasmin Activity	885
Laboratory Investigation of Hemostasis (Primary,	
Secondary, or Fibrinolytic Pathway) Using Global Assays	886
Thromboelastography (TEG)	886
ROTEM [®] (TEM)	886
Calibrated Automated Thrombogram (CAT)	886
Laboratory Investigation of Hereditary and Acquired	
Thrombophiilias (Hypercoagulable States)	887
Antithrombin (AT)	887
Protein C	888
Protein S	889
Activated Protein C Resistance (APCR)	889
Prothrombin G20210A	889
Additional Testing for Thrombosis	890
Molecular Markers of Hemostatic Activation	891
Laboratory Evaluation: Assessment for Pharmaceutical	001
Intervention of Hemostasis	891
Oral Vitamin K Antagonist Therapy and the Prothrombin Time–INR Value	891
Direct Oral Anticoagulants (DOACs)	892
Non-Parenteral Anticoagulation	893
Direct Thrombin Inhibitor (DTI) Therapy	070
Monitoring	894
Hemostasis Instrumentation	895
Evolution of Hemostasis Testing	895
Automated Hemostasis Analyzer Methodologies	895
Point-of-Care Hemostasis Instrumentation	897
Summary • Review Questions • References	

Section Eight

Hematology Procedures	905
37 Hematology Procedures	906
Overview	909
Introduction	909
Laboratory Testing Regulations	909
Specimen Collection: Phlebotomy	910
Anticoagulants	910
Equipment	911
Venipuncture	912
Capillary Puncture	913
Phlebotomy Safety	914
Microscopy: The Microscope	914
Bright-Field Microscopy	914
Phase-Contrast Microscopy	915
Koehler Illumination	916
Preventative Maintenance	917
Peripheral Blood Smear Preparation	917
Manual Method	917
Automated Method	918
Peripheral Blood Smear Staining	918
Peripheral Blood Smear Examination	919
Cell Enumeration by Hemacytometer	921
Manual Leukocyte Count	921
Manual Erythrocyte Count	922
Manual Platelet Count	922
Hemoglobin Concentration	922
Hematocrit	923
Erythrocyte Indices	923
Erythrocyte Sedimentation Rate (ESR)	924
Reticulocyte Count	926
Solubility Test for Hemoglobin S	927
Hemoglobin Electrophoresis	928
Quantitation Of Hemoglobin A ₂	929
Acid Elution for Hemoglobin F	929
Quantitation of Hemoglobin F	930
Alkali Denaturation	930
Other Methods	930
Heat Denaturation Test for Unstable Hemoglobin	930
Heinz Body Stain	931
Osmotic Fragility Test	931
Donath-Landsteiner Test for Paroxysmal Cold	,
Hemoglobinuria (PCH)	931
Erythropoietin	933
Soluble Transferrin Receptor	933
Cytochemical Stains	934
Myeloperoxidase	934
Sudan Black B	934
Chloroacetate Esterase	935

α -Naphthyl Esterase (Nonspecific Esterase)
Periodic Acid-Schiff
Leukocyte Alkaline Phosphatase
Acid Phosphatase and Tartrate-Resistant Acid Phosphatase (TRAP)
Terminal Deoxynucleotidyl Transferase
Toluidine Blue
Reticulin Stain and Masson's Trichrome Stain
Summary • Review Questions • References

Bone Marrow Examination

Overview	947
Introduction	947
Indications for Bone Marrow Evaluation	947
Bone Marrow Procedure	948
Bone Marrow Processing for Examination	949
Bone Marrow Aspirate	949
Bone Marrow Core Biopsy	949
Morphologic Interpretation of Bone Marrow	950
Bone Marrow Aspirate	950
Bone Marrow Touch Imprints	952
Bone Marrow Clot and Particle Preparation, Sections, and Core Biopsy	952
Benign Lymphoid Aggregates versus Malignant Lymphoma	953
Bone Marrow Iron Stores	954
Special Studies on Bone Marrow	955
Flow Cytometry	955
Cytogenetics	955
Molecular Genetics	955
Cytochemical Stains	957
Bone Marrow Report	957
Summary • Review Questions • References	

Automation in Hematology

Overview
Introduction
Automated Blood Cell-Counting Instruments
Impedance Instruments
Coulter [®] LH Series
Beckman-Coulter Unicel [®] DxH 800
Sysmex XE-Series TM
Sysmex XN-Series™
Abbott CELL-DYN Sapphire®
Light-Scattering Instruments
Siemens Healthcare ADVIA 120
Siemens Healthcare ADVIA 2120
Automated Digital Cell Morphology
Instrument
CellaVision [®] DM96 System
Summary • Review Questions • References

40 Flow Cytometry	993
Overview	995
Introduction	995
Principles of Flow Cytometry	995
Isolation of Single Particles	995
Light Scattering	996
Detection of Fluorochromes	997
Data Analysis	998
Immunophenotyping by Flow Cytometry	998
Specimen Requirements and Preparation	
for Immunophenotyping	1000
Isolation of Cells by Gating	1000
Fluorescence Activated Cell Sorting (FACS)	1000
Diagnosis and Classification of Mature	
Lymphoid Neoplasms	1001
Diagnosis and Classification of Acute Leukemia	1002
Diagnosis of Myelodysplastic Syndrome (MDS)	1004
Detection of Minimal Residual Disease (MRD)	1005
by Flow Cytometry	1005
Diagnosis and Surveillance of Immunodeficiency Disorders	1005
Flow Cytometry in Systemic Autoimmune Disease	
CD34 Enumeration	1000
Paroxysmal Nocturnal Hemoglobinuria (PNH)	1007
Hereditary Spherocytosis (HS)	1007
	1008
DNA Analysis Proliferation	1008
	1008
Ploidy Clinical Applications of DNA Applysis	1008
Clinical Applications of DNA Analysis Summary • Review Questions • References	1009

Chromosome Analysis of Hematopoietic and Lymphoid Disorders

Overview	1015
Introduction	1015
Chromosome Structure and Morphology	1015
Mitosis	1016
Cytogenetic Procedures	1017
Specimen Preparation	1017
Harvest Procedure and Banding	1018
Chromosome Analysis	1019
Chromosome Abnormalities	1020
Numerical Aberrations	1020
Structural Aberrations	1022
Polymorphic Variation	1022
Cytogenetic Nomenclature	1022
Cytogenetic Analysis of Hematopoietic	
and Lymphoid Disorders	1023
Processing Specimens	1024
Chronic Myelogenous Leukemia	1024

xvi Contents

Acute Myeloid Leukemia1026Myelodysplastic Syndromes1027Acute Lymphoblastic Leukemia/Lymphoma1027Luckemia Lymphoblastic Leukemia/Lymphoma1027
Acute Lymphoblastic Leukemia/Lymphoma 1027
Lymphoma and Lymphoproliferative Disorders 1027
Bone Marrow Transplantation 1028
Molecular Cytogenetics 1028

Summary • Review Questions • References

42	Molecular Analysis	
	of Hematologic Diseases	1033

Overview	1035
Introduction	1035
Overview of Molecular Technologies	1036
Nucleic Acid Extraction	1036
Nucleic Acid Amplification	1036
Hybridization Techniques	1040
Direct DNA Sequence Analysis	1042
Chain Termination Sequencing	1042
Clinical Applications of Molecular Diagnostics	
in Hematopathology	1043
Erythrocyte Disorders	1045
Leukocyte Disorders	1046
Infectious Diseases	1048
Clinical Applications of Molecular Diagnostics	
in Hemostasis	1049
CYP2C9	1049
VKORC1	1049
Factor V Leiden (FVL)	1049
Prothrombin G20210A	1049
Hemophilia A	1049
Hemophilia B	1049
Methylenetetrahydrofolate Reductase (MTHFR)	1049
von Willebrand Disease (VWD)	1049
Summary Review Questions References	

Section Nine

Quality Assessment	1053
43 Quality Assessment in the Hematology Laboratory	1054
Overview	1056
Test Coding and Reimbursement	1056

Quality Assessment	1056
Basic Components	1056
Proficiency Testing	1060
Competency Testing	1060
Method Evaluation/Instrument Comparison	1061
Reference Interval Determination	1064
Laboratory Safety	1065
Quality Control	1066
Control Materials	1066
Establishing Quality Control (QC) Limits	1066
Interpreting Quality Control Charts	1066
Bull's Testing Algorithm (Moving Averages)	1067
Monitoring Quality Control with Patient	
Specimens	1068
Individual Quality Control Plan	1068
Review of Patient Results	1069
Hematology	1069
Hemostasis	1073
Summary • Review Questions • References	

Appendices

APPENDIX A	1078
APPENDIX B: Hematopoietic and Lymphoid	
Neoplasms: Immunophenotypic and Genetic Features	1082
APPENDIX C: 2017 WHO Classification of	
Hematologic, Lymphopoietic, Histiocytic/Dendritic	
Neoplasms	1086
APPENDIX D: Hematology Procedures	1089
APPENDIX E: Answers to Review Questions	1104
APPENDIX F: Answers to Checkpoints	1111
APPENDIX G: Answers to Case Study Questions	1150
Glossary	1179
Index	1209

Foreword

CLS CLS CLS

Elizabeth A. Gockel-Blessing, PhD, MT(ASCP), CLS(NCA) Clinical Laboratory Science Series Editor Pearson Health Science Vice Chair & Associate Professor Department of Clinical Laboratory Science Doisy College of Health Sciences Saint Louis University

Preface

evel TM for Clinical Laboratory Hematology takes on a new face as a digital textbook. Revel is Pearson's newest way of delivering our respected content. Fully digital and highly engaging, Revel offers an immersive learning experience designed for the way today's students read, think, and learn. Enlivening course content with media interactives and assessments, Revel empowers educators to increase engagement with the course, and to better connect with students. To our knowledge this is the first book written for medical laboratory technician (MLT) and medical laboratory science (MLS) students in this format. Pearson performed in-depth analysis to determine the learning preferences of our students and teaching methods of instructors. The results indicated that many students prefer to read and study using digital resources. Furthermore, on-line instruction is now commonplace. Based on this knowledge, the decision was made to update to the fourth edition using the Revel platform. The focus of the book remains the same; it is a comprehensive resource that MLT and MLS students can use in all their hematology courses. Laboratory practitioners will find the book a welcome resource to help them keep up with advances in the field. Although the book is primarily written for clinical laboratory students and practitioners, it also is suited for use by students and practitioners in other health care professions including pathology, medicine, physician assistant, and nursing. Great effort has been put in by our authors to ensure this edition is thoroughly updated to include the latest in advances in laboratory medicine. Each chapter has a similar format that makes it easy for readers to find information on each topic. The digital format makes it convenient to instantly find word definitions, cell images, and other information as needed. An image atlas, test bank, powerpoint presentation and instructor's manual are available for instructors who adopt the book for their classes. In summary, the book is not just a book but a package of learning tools.

You will note that we have added a new editor, Dr. Kristin Piwowar-Landis. Kristin was a consulting editor on the previous edition. Based on her outstanding writing and editing skills as well as thorough knowledge of hematology with a focus on hematopoietic genetics, she was invited to serve as an editor in this edition with Dr. McKenzie as her mentor. The ultimate goal is for Kristin to replace Dr. McKenzie who wants to retire from the responsibilities of primary editor in future editions. It has been a pleasure to mentor her through the book writing process. Dr. Lynne Williams continues as an editor in this edition. Lynne's indepth knowledge in hemostasis as well as cellular biology shines through in the chapters she authors.

Organization

We believe that students must have a thorough knowledge of normal hematopoiesis and cell processes to understand the pathophysiology of hematologic/hemostatic diseases, evaluate and correlate laboratory test results, and ensure the appropriate utilization of the laboratory in diagnosis and patient follow-up. Thus, this book is organized so that the first nine chapters give the students a comprehensive base of knowledge about blood cell proliferation, maturation, and differentiation and the processes that control hematopoiesis. Section One (Chapters 1–2) includes an introduction to hematology and hematopoiesis, including cell morphology and the cell cycle and its regulation. This introduction includes a description of cellular processes at the molecular level, which could be new material for some students and a basic review for others. The reader might want to review these chapters before beginning a study of neoplastic disorders (Chapters 23–28). Section Two (Chapters 3-10) includes chapters on normal hematopoiesis, including a description of the structure and function of hematopoietic tissue and organs, erythropoiesis, leukopoiesis, thrombopoiesis, and hemoglobin. Hemoglobin synthesis, function, and breakdown are discussed in Chapter 6. The chapter on leukocytes is divided into two separate chapters: granulocytes/monocytes (Chapter 7) and lymphocytes (Chapter 8). An introductory chapter on platelets (Chapter 9) completes the discussion of normal blood cells. Details of platelet function and physiology are found in Section Seven, Chapter 31. Rounding out this section, "The Complete Blood Count and Peripheral Blood Smear Examination" (Chapter 10) describes the information that can be gained about blood cells from these frequently ordered laboratory tests. Most of the remaining chapters refer to the tests that are described in this chapter.

The next three sections include discussions of hematologic disorders. Section Three (Chapters 11–20) begins with an introduction to anemia (Chapter 11). We combined the introduction to anemia and the introduction to hemolytic anemia into one chapter because many anemias have a hemolytic component. This chapter is followed by chapters on the various anemias. Each anemia is discussed in the following manner: introduction, etiology, pathophysiology, clinical presentation, laboratory presentation, and therapy. This format helps readers understand what laboratory tests can help in diagnosis and how to interpret the results of these tests. Section Four (Chapters 21 and 22) covers the nonmalignant disorders of leukocytes. Section Five (Chapters 23–29) is a study of hematopoietic neoplasms. This section begins with an overview of these disorders to help students understand the classification, terminology, and pathophysiology of neoplasms and the laboratory's role in diagnosis and therapy. As a part of this section, we included a chapter on stem cell transplantation (Chapter 29) because it is a frequently used therapy for these neoplasms and the laboratory plays a critical role in harvesting the stem cells and preparing them for transplant. Molecular studies are becoming a major diagnostic tool for neoplastic disorders and are discussed within each chapter as well as in the chapter devoted to molecular diagnostics (Chapter 42). Some instructors might prefer to cover Section Eight, the study of bone marrow (Chapter 38), flow cytometry (Chapter 40), cytogenetics (Chapter 41), and molecular diagnostics (Chapter 42) before teaching Section Five or integrate this material with Section Five. Some hematology courses do not include these topics, or instructors might not want to cover them in the depth presented in this book.

Section Six (Chapter 30) is a study of body fluids from a hematologic perspective and thus includes a large number of photographs of cells found in body fluids. Discussions of semen analysis and amniotic fluid lamellar body counts are included. Not all hematology courses include this topic, but the chapter is written in such a way that it can be used separately in a body fluid course.

Section Seven (Chapters 31–36) is a study of hemostasis. Chapters on normal hemostasis include primary and secondary hemostasis and fibrinolysis. They are followed by three chapters on disorders of hemostasis. Chapter 36 describes the testing procedures for hemostasis, including information on automation. This chapter describes an extensive collection of coagulation procedures.

Section Eight (Chapters 37–42) includes chapters on test procedures that help in the diagnosis of hematologic disorders. Automation in hematology is included in Chapter 39. Chapter 42 is designed to introduce molecular procedures and their use in detecting various hematologic and hemostatic disorders. A background in genetics is suggested before students begin this chapter.

Section Nine (Chapter 43) is a thorough discussion of quality assessment in the hematology laboratory. Problems discussed include common abnormal results, errors, and alert flags. Corrective action to take to resolve these problems is described. Several excellent tables help to quickly find needed information. We suggest that these tables be read early in the course of study because they can be used periodically when attempting to interpret and correlate laboratory test results. Chapter 10 refers the reader to these tables because it discusses interpretation of test results and abnormalities in the CBC.

Appendices collect additional information including step-by-step procedures for some hematology testing, and reference tables.

The text emphasizes the effective, efficient, and ethical use of laboratory tests. The clinical laboratory professional is in an ideal position to assist physicians in interpreting laboratory test results and choosing the best reflex tests to arrive at a diagnosis or evaluate therapy. Many laboratories develop algorithms to assist in these tasks. This text includes several algorithms that some laboratories use.

Suitable for all Levels of Learning

The book is designed for both MLT and MLS students. Using only one textbook for both levels is beneficial and economic for laboratory science programs that offer both levels of instruction. It also is helpful for programs that have developed articulated MLT to MLS curricula. The MLS program can be confident of the MLT's knowledge in hematology without doing a time-consuming analysis of the MLT course. In addition, this book is expected to be a great resource for students in on-line courses and for instructors who teach using this format.

Objectives are divided into two levels: Level I (basic) and Level II (advanced). MLT instructors who reviewed the objectives for this text generally agreed that most Level I objectives are appropriate for the MLT body of knowledge. They also indicated that some Level II objectives are appropriate for MLTs. MLS students should be able to meet both Level I and Level II objectives in most cases. If the MLS program has two levels of hematology courses—Level I and Level II—this book can be used for both.

All instructors, regardless of discipline or level, need to communicate to their students what is expected of them. They might want their students to find the information in the text that allows them to satisfy selected objectives, or they might assign particular sections to read. If not assigned specific sections to read, the MLT students may read more than expected, which is not a bad thing!

The design of the text is such that each chapter is divided into modules and each objective is identified with the module that addresses it. These objectives are divided into Level 1 and Level 2. There are two levels of review questions at the end of each module and chapter that are matched to the two levels of objectives. Case Study questions and the Checkpoints are included within each module and are appropriate for the information in that module or another previous module. Checkpoints and case study questions are not delineated by level. Students should use these valuable resources to assess their understanding of the material.

We recognize that there are many approaches to organizing a hematology course and that not all instructors teach in the same topic sequence or at the same depth. Thus, we encourage instructors to use the book by selecting appropriate chapters and objectives for their students based on their course goals. Each program should assess what content fits its particular curriculum. The layout of the book is such that instructors can select the sequence of chapters in an order that fits their course design, which might not necessarily be the sequence in the book. However, we recommend that the course begin with Sections One and Two and that the chapters "Introduction to Anemia" and "Introduction to Hematopoietic Neoplasms" be studied before the individual chapters that follow on these topics. The Background Basics sections help the instructor determine which concepts students should master before beginning each chapter. This feature helps instructors customize their courses. Some hematology courses might not include some chapters on subjects such as molecular techniques, cytogenetics, flow cytometry, and body fluids but they might be helpful in other courses.

As a note, this text uses "mc" as an abbreviation for "micro", which replaces μ . Thus, abbreviations of mcg, mcL, mcM replace those that use the Greek letter "mu" (μ g, μ L, μ M).

Unique Pedagogical Features

As in the past, the text has a number of unique pedagogical features to help the students assimilate, organize, and understand the information. Each chapter begins with a group of components intended to set the stage for the content to follow.

- The **Objectives** comprise two levels: Level I for basic or essential information and Level II for more advanced information. Each instructor should guide students to the appropriate level to meet course expectations.
- The **Key Terms** feature alerts students to important terms used in the chapter and found in the glossary. With this digital version, these terms are provided as links within the chapter, giving the student the definition within the glossary.
- The **Background Basics** component alerts students to material that they should have learned or reviewed before starting the chapter. In most cases, this feature links readers to previous chapters to help them find the material if they want to review it.
- The **Case Study** is a running scenario that first appears at the beginning of a chapter, giving a patient's clinical and laboratory information that is related to the chapter content. It is meant to focus the students' attention on the chapter subject matter. At appropriate places throughout the chapter additional information on the case is provided, such as additional laboratory test results, followed by questions that relate to the material presented in preceding sections. The answers are provided after the student submits the answers.
- The **Overview** gives readers an idea of the chapter content and organization.
- **Checkpoints** are integrated throughout the chapter to help the student determine if they understand what

they just read. They are questions that require students to pause along the way to recall or apply information covered in preceding sections. The answers are provided after the student submits their answer.

- A **Summary** concludes the text portion of each chapter to help students bring all the material together.
- **Review Questions** appear at the end of each chapter. The two sets of questions, Level I and Level II, are referenced and organized to correspond to the Level I and Level II objectives. Answers are provided in the Appendix.
- Image Atlas

The page design features a number of enhancements intended to aid the learning process.

- **Figures and tables** are used liberally to help students organize and conceptualize information. This is especially important for visual learners.
- Microphotographs are displayed liberally in the book and are typical of those found in a particular disease or disorder. Students should be aware that cell variations occur and that blood and bone marrow findings do not always mimic those found in textbooks. Because there is so much variation in the morphology of normal and abnormal cells, we added a Flash Card review of additional cells at the end of many chapters. The legend for each microphotograph gives the original magnification but sometimes the image was zoomed to enhance detail.

Appendices

- Appendix A contains tables of reference intervals for common hematology test results.
- The table in Appendix B was extensively revised and updated consistent with the WHO 2017 classification of hematopoietic and lymphoid tissue through a collaborative effort of several authors (Drs. Kathleen Wilson, Katalan Keleman, Sara Taylor, and Tim Randolph). It lists hematopoietic neoplasms with the following information on each: immunophenotype using CD markers, cytogenetic abnormalities, and genotypic findings. This table provides a ready reference for information from the chapters in Section Five (Neoplastic Hematologic Disorders) and Section 8 (Hematology Procedures).
- Appendix C is a comprehensive classification of hematopoietic, lymphopoietic, and histiocytic/dendritic neoplasms using the updated 2017 WHO classification.
- Appendix D is a collection of common laboratory procedures that are linked from Chapter 37 where the procedure is discussed. These can be printed and used in hematology laboratory courses.

- Appendix E provides the answers to the multiple choice questions that appear at the end of each chapter.
- Appendix F provides the answers to the Checkpoint questions that appear throughout each chapter.
- Appendix G provides the answers to the Case Study questions that appear throughout each chapter.

A Complete Teaching and Learning Package

A variety of ancillary materials designed to help instructors be more efficient and effective and students more successful complements this book.

An **Instructor's Resource Center** is available upon adoption of the text and gives the instructor access to a number of powerful tools in an electronic format. The following materials are downloadable:

- The **TestGen** feature includes questions to allow instructors to design customized quizzes and exams. Download the TestGen desktop application and test bank, choose questions that align to your textbook, and generate your test it's that easy!
- The **PowerPoint Lectures** tool contains key discussion points and color images for each chapter. This feature provides dynamic, fully designed, integrated lectures that are ready to use, allowing instructors to customize the materials to meet their specific course needs. These ready-made lectures will save instructors time and allow an easy transition into using *Clinical Laboratory Hematology*.
- The **Image Library** feature contains all of the images from the text. Instructors have permission to copy and paste these images into PowerPoint lectures, printed documents, or website as long as they are using *Clinical Laboratory Hematology* as their course textbook.
- The **Instructor's Resource Manual** tool in Word formats can be accessed.

Acknowledgments

Writing a textbook is a complicated task that requires a team of dedicated authors, editors, copy editors, artists, permission researchers, educators, practitioners, content reviewers, project and program managers, and many other individuals behind the scenes. The team that Pearson and the editors put together to make the fourth edition of this book an excellent hematology and hemostasis resource for students and health care practitioners worked tirelessly over several years to bring the project to completion. Dr. Kristin Landis-Piwowar envisioned how the mechanics of this new digital "book" could lend to a pioneering form of medical laboratory science education. The new and returning authors ensured that their chapters were up to date and accurate. Content reviewers and users of the previous editions provided helpful suggestions that were incorporated into the chapters. Dave Falleur, Diana Cochran-Black, Muneez Esani, Sara Wagner, Holly Weinberg, and Linda Whaley had important roles in reviewing select chapters. We offer our thanks to this group who ensured a quality textbook for a wide audience.

Mark Cohen from Pearson was responsible for the creation of the first edition of this text. His keen insights into developing a unique textbook design with pedagogical enhancements helped *Clinical Laboratory Hematology* become a leading textbook in the field of clinical laboratory science. Thank you, Mark. Thank you, Pearson, for having faith in us to publish a fourth edition in digital format. Thank you for creating and providing the special team of experts to help us accomplish this task. We recognize that the job is not over but will require the efforts of sales and marketing to ensure widespread use and adoption. John Goucher had the foresight to develop the fourth edition and for the background work that identified and justified the need for a digital version. He had faith in us and provided support and encouragement for another edition of *Clinical Laboratory Hematology*.

Michael Giacobbe was the Pearson man behind the scenes who kept the entire process moving forward. He also on-boarded authors for support materials including PowerPoints, test questions, and the instructor's manual. This group of author educators, Elizabeth Warning, MS, MLS(ASCP)^{CM}, University of Cincinnati; Joshua J. Cannon, MS, MLS(ASCP)^{CM}, Thomas Jefferson University; and Holly Weinberg, BS, MLS(ASCP)^{CM}, contributed behind the scenes to enhance the instructors' use of this book. Thank you all for your timely assistance. Ellen Viganola, Digital Project Manager for Pearson did a great job transferring the manuscript from print to digital.

Development editor, Barbara Price was our daily contact who kept us on track even though it meant multiple deadline revisions. This was especially challenging as we moved from a paper copy to a digital version of the book. Her gentle prodding was evident and appreciated. Her editing was superb. Dan Knott, Editorial Project Manager, and Prathiba Rajagopal, Senior Project Manager, both from SPI Global, kept track of the many people, files and technical elements involved in bringing the book to the digital realm.

Sara Wagner and John Landis contributed countless hours of scanning slides and taking pictures to produce an incredible image atlas that accompanies this fourth edition. John Landis lead the compiling, organizing, and editing of the atlas images and as well as other microphotographs in the book.

Maggie Sera carefully reviewed and edited the references in this edition. Her attention to detail and sleuthing skills were imperative to ensuring that we presented our citations properly.

I have enjoyed the unique opportunity to edit four editions of Clinical Laboratory Hematology with Pearson. As our knowledge in hematology has expanded, many new tests have been developed to help diagnose hematologic diseases. Likewise, the number of authors and editors needed to cover this material has increased. My thanks go out to all hematologists who have contributed over the years to make this text a leader for MLS/MLT education and practice. I am privileged to work with my brilliant coeditors, Lynne and Kristin. Thank you to Kristin for the superb job you have done in creating, editing, and authoring, especially the image atlas. I couldn't have found a better replacement. Thank you to my colleague and friend Dr. J. Lynne Williams for her dedication to this process in the last several editions. Her sharp eyes, superb writing talent and keen mind are essential traits for an editor. We have similar philosophies about teaching hematology and often discussed how to best present the information in this book and make it better.

During the time this book was under development, my professional life took over many hours of my personal life. Many thanks to my husband and best friend Gary for his support, sacrifices, and understanding during some very stressful times so this edition could become a reality. My sincerest gratitude to my parents, George and Helen Olson, who instilled in me the confidence that I could accomplish anything I set my heart to. This mind-set has stuck with me through life, especially in this task. I hope that through example I have provided the same to my children and grandchildren.

SBM

KLP

I am thankful to those who helped to build my fire. My father, John Landis, guided me into medical laboratory science and became my hematology professor. My fascination with blood cells was sparked by my dad. Lynne Williams provided me the opportunity of an academic position and encouraged me to participate in the third edition of this book; Lynne has kindled my professional work. As digital natives, my students have taught me how they learn in the technology era. They inspired my vision and pursuit of a novel means to teach hematology through technology; these past students are my energizing air. The foundation of this book is the ingenuity of Shirlyn McKenzie who has dedicated her life to educating generations of budding hematologists. Because she entrusted me as editor, Shirlyn is my flame.

I am also thankful to those who sustained my fire. My husband, Todd, and my children, Theron and Kaia, are the glowing embers that supported my fire when my professional endeavors intersected with my personal life. And my mother, whose empowering spirit, eternal energy, and helping hands keep my blaze roaring. I wouldn't be half of who I am without my family.

My gratitude is endless to you all.

I extend a special thank you to my colleagues in the Clinical and Diagnostic Sciences program at Oakland University—Dr. Sumit Dinda, Dr. Bekah Martin, Lisa DeCeuninck, Terese Trost, and Bill Van Dyke, and our many part-time instructors—who kept the programs moving forward while we were working on this new edition and to the CDS students of the past 2 years who tolerated a distracted and often absent-minded professor. To all my former students: You have been my inspiration to try to create a meaningful and useful book to support your educational endeavors. But special thank you to my co-editors, Dr. Shirlyn McKenzie, for the privilege of accompanying you on this wonderful journey through these three editions together, and Dr. Kristin Landis-Piwowar, who has been a major guiding force and visionary for this new e-edition book.

JLW

Reviewers

LINDA L. BREIWICK, BS, CLS(NCA), MT(ASCP)

Program Director, Medical Laboratory Technology Shoreline Community College Seattle, WA

LINDA COMEAUX, BS, CLS(NCA)

Vice-President for Instruction Red Rocks Community College Lakewood, CO

MONA GLEYSTEEN, MS, CLS(NCA)

Program Director, Medical Laboratory Technician Program Lake Area Technical Institute Watertown, SD

ANNA SWANN, MS, MLS (ASCP)^{CM}

The University of Southern Mississippi Hattiesburg, MS

Contributors

GRACE B. ATHAS, PhD

Assistant Professor, Department of Pathology Louisiana State University, School of Medicine New Orleans, LA Chapter 16

CHERYL BURNS, MS, MLS(ASCP)^{CM}

Distinguished Teaching Professor Department of Health Sciences, Medical Laboratory Sciences School of Health Professions University of Texas Health Science Center at San Antonio San Antonio, TX Chapters 37, 39, 43

MICHELLE BUTINA, PhD, MLS(ASCP)^{CM}

Associate Professor, Department of Pathology, Anatomy, and Laboratory Medicine West Virginia University, School of Medicine Morgantown, WV Chapter 9

DIANA L. COCHRAN-BLACK, DR PH, MLS(ASCP)^{CM}, SH(ASCP)^{CM}

Associate Professor and Chair, Medical Laboratory Sciences Program Wichita State University Wichita, KS Chapter 17

FIONA E. CRAIG, MD

Professor of Pathology, Division of Hematopathology Department of Laboratory Medicine and Pathology Mayo Clinic Arizona Phoenix, AZ Chapters 28, 40

AAMIR EHSAN, MD

Chief, Pathology and Laboratory Medicine South Texas Veterans Health Care System Associate Professor, Department of Pathology University of Texas Health Science Center at San Antonio San Antonio, TX Chapters 29, 38

MUNEEZA ESANI, PhD, MPH, MHA, MT(ASCP)

Assistant Professor, Clinical Laboratory Science University of Texas Medical Branch Galveston, TX Chapter 12

DEBORAH E. FOX, PhD, MT (ASCP)

Associate Professor and Director, Medical Laboratory Science Program Franciscan Missionaries of Our Lady University Baton Rouge, LA Chapter 13

ROBERT C. GOSSELIN, CLS

Hemophilia Treatment Center Division of Hematology/Oncology UC Davis Health System Sacramento, CA Chapter 36

KRISTLE HABERICHTER, DO

Anatomic and Clinical Pathology Grand Traverse Pathology, PLLC Traverse City, MI Chapter 38

JOEL D. HUBBARD, PhD, MLS(ASCP)

Associate Professor, Laboratory Sciences and Primary Care

Texas Tech University Health Science Center, School of Health Professions Lubbock, TX Chapters 5, 15

KATALIN KELEMEN, MD, PhD

Consultant, Department of Pathology and Laboratory Medicine Associate Professor of Pathology Mayo Clinic Arizona Phoenix, AZ Chapters 28, 40

GIDEON H. LABINER, MS, MLS(ASCP)CM

Associate Professor, Medical Laboratory Science Program University of Cincinnati Cincinnati, OH Chapter 23

JOHN H. LANDIS, MS, MLS(ASCP)

Professor Emeritus, Ferris State University Canadian Lakes, Michigan Adjunct Professor, University of Cincinnati Chapter 10

KRISTIN LANDIS-PIWOWAR, PhD, MLS(ASCP)^{CM}

Associate Professor, Clinical and Diagnostic Sciences Associate Dean, School of Health Sciences, Oakland University Rochester, MI Chapters 2, 7, 10, 21

SALLY S. LEWIS, PhD, MLS (ASCP), HTL, MB

Associate Dean and Professor, College of Health Sciences and Human Services Tarleton State University Stephenville, TX Chapter 42

DAVID L. MCGLASSON, MS, MLS(ASCP)^{CM}

Retired Clinical Research Scientist 59th Clinical Research Division Laboratory Services JBSA Lackland, TX Chapter 36

SHIRLYN B. MCKENZIE, PhD, MLS(ASCP)^{CM}, SH^{CM}

Distinguished Teaching Professor Professor Emeritus and Chair Emeritus Department of Health Sciences, Division of Medical Laboratory Sciences School of Health Professions University of Texas Health Science Center at San Antonio San Antonio, TX Chapters 1, 6, 11, 12

ROSLYN WOFFORD MCQUEEN, PhD, CCRC, MT(ASCP), SH Clinical Research Coordinator

Hurley Medical Center Flint, MI Chapter 22

CATHERINE N. OTTO, PhD, MBA, MLS(ASCP)^{CM}

Associate Professor, Department of Clinical Laboratory and Medical Imaging Sciences School of Health Professions Rutgers, The State University of New Jersey Newark, NJ Chapter 11, 43

KEILA POULSEN, BS, MLS(ASCP)^{CM}, H, SH

Hematology and Histology Supervisor Eastern Idaho Regional Medical Center Idaho Falls, ID Chapter 10

TIM R. RANDOLPH, PhD, MT(ASCP)

Associate Professor, Department of Clinical Health Sciences Saint Louis University St. Louis, MO Chapters 14, 24

KYLE B. RIDING, PhD, MLS(ASCP)

Assistant Professor of Medicine University of Central Florida Orlando, FL Chapters 26, 27

STACEY ROBINSON, MS, MLS(ASCP)^{CM}, SH^{CM}

Supervisor, Clinical Microscopy Walter Reed National Military Medical Center Bethesda, MD Chapters 5, 15

ANNETTE SCHLUETER, MD, PhD

Clinical Professor, Department of Pathology University of Iowa Iowa City, IA Chapter 3

LINDA SMITH, PhD, MLS(ASCP)^{CM}, BB

Professor Emeritus, Department of Health Sciences, Division of Medical Laboratory Sciences University of Texas Health San Antonio San Antonio, TX Chapters 19, 20

JULIE K. SODER, MS, MLS(ASCP)^{CM}

Assistant Professor, Department of Clinical Laboratory Science University of Texas Medical Branch Galveston, TX Chapter 13

BROOKE L. SOLBERG, PhD, MLS(ASCP)CM

Associate Professor and Chair, Department of Medical Laboratory Science University of North Dakota School of Medicine and Health Sciences Grand Forks, ND Chapters 33, 34

JEAN SPARKS PhD, MT(ASCP)

Associate Professor, Department of Life Sciences Texas A&M University-Corpus Christi Corpus Christi, TX Chapter 18

SARA TAYLOR, PhD, MLS(ASCP), MB^{CM}

Associate Professor, Medical Laboratory Science and Public Health Tarleton State University Fort Worth, TX Chapters 25, 42

SARA L. WAGNER, MLS (ASCP)^{CM}

Instructor of Hematology Beaumont Health School of Medical Laboratory Science Royal Oak, MI Chapters 10, 37, 39

JERELYN WALTERS, MLS(ASCP), SH

Technical Supervisor, Esoteric Testing, ACL Laboratories Milwaukee, WI Chapter 30

LINDA WHALEY, MLS

Technical Specialist, Stem Cell Laboratory Cardinal Bernard Cancer Center University Medical Center Loyola University Chicago, IL Chapter 29

J. LYNNE WILLIAMS, PhD, MT(ASCP)

Professor and Chair, Clinical and Diagnostic Sciences Oakland University, School of Health Sciences Rochester, MI Chapters 4, 8, 31, 32, 35

KATHLEEN S. WILSON, MD, FCAP, FACMG

Professor, Department of Pathology and The McDermott Center for Human Growth and Development Director, Cytogenomic Microarray Analysis Laboratory University of Texas Southwestern Medical Center Dallas, TX Chapter 41

ANDREA C. YUNES, MD

Audie L. Murphy Memorial VA Hospital San Antonio, TX Chapter 29, 38

Credits

Chapter 1 Table 1-1 Courtesy of Linda Smith.

Chapter 2 Figure 2-1 From "The fluid mosaic model of the structure of cell membranes" by Singer S J & Nicolson G L in Science, Volume 175, Number 46, pp. 720–31. Published by Elsevier, © 1972.

Chapter 3 Figure 3-2 Used by permission of Dr. Corey Parlet. Figure 3-4 a,b Annette Schlueter.

Chapter 5 Figure 5-2 Shirlyn McKenzie. Figure 5-3 Kristin Landis-Piwowar. Figure 5-4 Based on Clinical Expression and Laboratory Detection of Red Cell Membrane Protein Mutations by J. Palek and P. Jarolim in SEMINARS IN HEMATOLOGY 30(4):

249–283, October 1993. Published by W.B./Saunders Co., an imprint of Elsevier Health Science Journals. Table 5-1 images Shirlyn McKenzie.

Chapter 6 Figure 6-8 MCMURRY, JOHN; CASTELLION, MARY E.; BALLENTINE, DAVID S.; FUNDEMENTALS OF GENERAL, ORGANIC, AND BIOLOGICAL CHEMISTRY, 5th ED.,© 2007. Reprinted and Elctronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey. Figure 6-9 Based on Principles of Biochemistry, 4E by H. R. Horton, L. A. Moran, K. G. Scrimgeour and M. D. Perry. Published by Pearson Education, Inc., © 2006.

Chapter 7 Figures 7-1; 7-2; 7-3; 7-4; 7-10; 7-11a-c; 7-12; 7-13; Table 7-3 images Shirlyn McKenzie.

Chapter 8 Table 8-3 images Shirlyn McKenzie.

Chapter 9 Figures 9-1; 9-2a,b; 9-3a,b; 9-4; 9-5 Shirlyn McKenzie.

Chapter 10 Figures 10-1; 10-2; 10-4a; 10-5a-c; 10-7; 10-9; 10-11; 10-13;

10-14; 10-15; Table 10-10 images 1-4 Shirlyn McKenzie. Figure 10-3 Roche Diagnostics Hematology. Figures 10-4b,c; 10-12 John H. Landis. Figures 10-6; 10-8a,b; 10-10; Table 10-7 images; Table 10-10 image 5; Case Study images Kristin Landis-Piwowar.

Chapter 11 Figure 11-1 Shirlyn McKenzie. Figure 11-2 Roche Diagnostics Hematology. Tables 11-3, 11-4, 11-5, 11-6 From Morbidity And Mortality Weekly Report. Published by Centers for Disease Control.

Chapter 12 Figures 12-11; 12-13a,b; 12-14; 12-15; 12-17 Shirlyn McKenzie.

Chapter 13 Table 13-1 Data from Huisman, T.H., Carver, M.F., Baysal, E., & Efremov, G. D. (2017). et al. A Database of Human Hemoglobin Variants and Thalassemias [Data file]. Retrieved from http://globin.cse.psu.edu/globin/hbvar/ menu.html. Figures 13-3, 13-4, 13-5, 13-w6, 13-7 Shirlyn McKenzie. **Chapter 14** Figures 14-4a,b; 14-5; 14-8; 14-9; 14-11; 14-12; 14-13; 14-14 Shirlyn McKenzie. Table 14-8 Data from Maria Stella Figueiredo (2015) The Compound state: Hbs/Beta. Thalassemia, Rev Brass Hemtol Hemotes 37(3). 150–152; Ngo DA et.al.(2011) Fetal Heameoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin and deletional hereditary persistence of fetal haemoglobin, 156:259–264; Fucharoen S, et.al. (2003) Interaction of haemoglobin and several forms of thalassemia in combidian families 88(10) 1092–1098.

Chapter 15 Figure 15-1b Kristin Landis-Piwowar. Figures 15-1a; 15-03; 15-04a,b; 15-11 Shirlyn McKenzie.

Chapter 16 Figure 16-1 Shirlyn McKenzie.

Chapter 17 Figure 17-1 Pearson Education, Inc. Figures 17-2; 17-4; 17-5; 17-6; 17-7; 17-8; 17-9 Shirlyn McKenzie.

Chapter 18 Figures 18-2; 18-4; 18-6 Shirlyn McKenzie.

Chapter 19 Figures 19-4; 19-5 Shirlyn McKenzie.

Chapter 20 Figures 20-2; 20-3; F20-4a-c Shirlyn McKenzie. Figure 20-5 John H. Landis.

Chapter 21 Figures 21-1; 21-2; 21-3a,b; 21-4; 21-5; 21-7; 21-8; 21-9; 21-10a,b; 21-11; 21-12; 21-13; 21-14; 21-15; 21-16; 21-17 Shirlyn McKenzie. Figure 21-6 John H. Landis.

Chapter 22 Figures 22-1; 22-2; 22-3; 22-4; 22-5 Shirlyn McKenzie. Table 22-6 From MMWR Recommendations and Reports: Past Volume: 63(RR-03):1–10. Published by Centers for Disease Control and Prevention.

Chapter 23 Figures 23-2; 23-3 Shirlyn McKenzie.

Chapter 24 Figures 24-2; 24-5; 24-6; 24-7; 24-8; 24-9; 24-10; 24-12; 24-13; 24-14 Shirlyn McKenzie. Table 24-14 Data from Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, LeBeau MM, Bloomfield CD, Cazzola M, and Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20);2391–2405.

Chapter 25 Figures 25-1; 25-2; 25-3; 25-4; 25-5; 25-6; 25-7; 25-8; 25-09a,b; 25-11a,b; 25-12 Shirlyn McKenzie.

Chapter 26 Figures 26-2a,b; 26-3; 26-4; 26-5; 26-6; 26-7a,b; 26-08a,b Shirlyn McKenzie.

Chapter 27 Figures 27-1a,b; 27-2a,b Shirlyn McKenzie.

Chapter 28 Figures 28-2; 28-5d; 28-7; 28-11a; 28-12a,b; 28-13 Fiona Craig. Figures 28-1a,b; 28-3a,b; 28-4a-d; 28-5a-c; 28-6a,b; 28-8; 28-9a-c; 28-10a,b; 28-11b-d; 28-14; 28-15a-c; Shirlyn McKenzie.

Chapter 29 Figures 29-1; 29-2a,b Dr. Aamir Ehsan.

Chapter 30 Table 30-2 Data from Morgenstern LB, Luna-Gonzales H, Huber JC et al. Worst headache and subarachnoid hemorrhage: prospective, modern computed tomography and spinal fluid analysis. Ann Emerg Med. 1998;32:297–304; Julia-Sanchis ML. Rapid differential diagnosis between subarachnoid hemorrhage and traumatic lumbar puncture by D-dimer assay. Clin Chem. 2007;53:993. Figures 30-5; 30-6; 30-7; 30-59a,b; 30-60; 30-62; 30-63; 30-64; 30-65; 30-66; 30-67 Jerelyn Walters. Figures 30-8 through 30-31; 30-33 through 30-58; 30-68 through 30-71 Shirlyn McKenzie.

Chapter 31 Figures 31-7a-d Shirlyn McKenzie.

Chapter 33 Figures 33-02a-c; 33-7 Shirlyn McKenzie.

Chapter 37 Figures 37-1; 37-2; 37-3; 37-4; 37-5; 37-9; 37-18 Cheryl Burn. Figures 37-10; 37-20; 37-22; 37-25; 37-30 Shirlyn McKenzie. Figures 37-6 Tracey C. Webb. Figures 37-29; 37-31; 37-32; 37-33; 37-34; 37-35; 37-36; 37-37 Dr. Aamir Ehsan. Figures 37-23; 37-24 Courtesy of Helena Laboratories.

Chapter 38 Figures 38-2; 38-3; 38-4; 38-5a-c; 38-6; 38-7; 38-8 Shirlyn McKenzie.

Chapter 39 Figure 39-1 From Seminar and Case Studies: The Automated Differential by Pierre R. Copyright © 1985 by Beckman Coulter, Inc. Figures 39-2; 39-3; 39-6 From Significant Advances in Hematology. Copyright © 1983 by Beckman Coulter, Inc. Figure 39-4 From Red Cell Distribution Parameters – (1) RDW – SD (2) RDW (CV), Technical Bulletin 9617. Copyright © 1983 by Beckman Coulter, Inc. Figures 39-11; 39-12; 39-13; 39-14 From Advancements in Technology: WBC Differential Methodology, Technical Bulletin 9403. Copyright © 2009 by Beckman Coulter, Inc. Figures 39-9; 39-16; 39-17; 39-18; 39-21; 39-25; 39-26 Shirlyn McKenzie.

Chapter 41 Figures 41-5; 41-6; 41-10 Shirlyn McKenzie. Figure 41-4 NiMedia/Shutterstock.

Chapter 43 Table 43-6 From Abbott Laboratories. Used by permission of Abbott Laboratories.

Appendix C Modified with permission from Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, Thiele, J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, Siebert R. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, revised 4th edition. IARC, Lyon, 2017.

Glossary Clinical and Laboratory Standards Institute (CLSI) entry is Copyright by Clinical and Laboratory Standards Institute.

Section One Introduction to Hematology

Chapter 1 Introduction

Shirlyn B. McKenzie, PhD

Objectives—Level I and Level II

At the end of this unit of study, the student should be able to:

- Compare the reference intervals for hemoglobin, hematocrit, erythrocytes, and leukocytes in infants, children, and adults.
- **2.** Identify the function of erythrocytes, leukocytes, and platelets.
- **3.** Describe the composition of blood.
- **4.** Explain the causes of change in the steady state of blood components.
- **5.** Describe reflex testing, and identify the laboratory's role in designing reflex testing protocols.

- **6.** Define hemostasis and describe the result of an upset in the hemostatic process.
- **7.** Identify hematology and hemostasis screening tests.
- **8.** List the three components of laboratory testing and correlate errors with each component.
- **9.** Define value-based health care and give an example of how the laboratory can assist in building the value agenda.

Chapter Outline

Objectives—Level I and Level II 2 Key Terms 3 Background Basics 3 Case Study 3 Overview 3 Introduction 3 Composition of Blood 4 Reference Intervals for Blood Cell Concentration 4 Hemostasis 5 Blood Component Therapy 5 Investigation of a Hematologic Problem 6 The Value of Laboratory Testing 6 Summary 7 Review Questions 7 References 8

Key Terms

Activated partial thromboplastin	Hematopoiesis	RBC indices
time (APTT)	Hemoglobin	Red blood cell (RBC)
Complete blood count (CBC)	Hemostasis	Reflex test
Diapedese	Leukocyte	Serum
Erythrocyte	Plasma	Thrombocyte
Hematocrit	Platelet	White blood cell (WBC)
Hematology	Prothrombin time (PT)	

Background Basics

Students should complete courses in biology and physiology before beginning this study of hematology.

CASE STUDY

We refer to this case study throughout the chapter.

Aaron, a 2-year-old male, was seen by his pediatrician because he had a fever of 102–104 °F over the past 24 hours. Aaron was lethargic. Before this, he had been in good health except for two episodes of otitis.

Consider why the pediatrician might order laboratory tests and how this child's condition might affect the composition of his blood.

Overview

Hematology is the study of blood and blood-forming organs. The hematology laboratory is one of the busiest areas of the clinical laboratory. Even small, limited-service laboratories usually offer hematology tests. This chapter is an introduction to the composition of blood and the testing performed in the hematology laboratory to identify the presence and cause of disease.

Introduction

Blood has been considered the essence of life for centuries. One of the Hippocratic writings from about 400 B.C. describes the body as being a composite of four humors: black bile, blood, phlegm, and yellow bile. It is thought that the theory of the four humors came from the observation that four distinct layers form as blood clots in vitro: a dark-red, almost black, jellylike clot (black bile); a thin layer of oxygenated red cells (blood); a layer of white cells and platelets (phlegm); and a layer of yellowish serum (yellow bile).¹ Health and disease were thought to occur as a result of an upset in the equilibrium of these humors.

The cellular composition of blood was not recognized until the invention of the microscope. With the help of a crude magnifying device that consisted of a biconvex lens, Antonie van Leeuwenhoek (1632–1723) accurately described and measured the **red blood cells** (also known as **RBCs** or **erythrocytes**). The discovery of **white blood cells** (also known as **WBCs** or **leukocytes**) and **platelets** (also known as **thrombocytes**) followed after microscope lenses were improved.

As a supplement to these categorical observations of blood cells, Karl Vierordt, in 1852, published the first quantitative results of blood cell analysis.² His procedures for quantification were tedious and time consuming. After several years, many others attempted to correlate blood cell counts with various disease states.

Improved methods of blood examination in the 1920s and the increased knowledge of blood physiology and blood-forming organs in the 1930s allowed anemias and other blood disorders to be studied on a rational basis. In some cases, the pathophysiology of hematopoietic disorders was realized only after the patient responded to experimental therapy.

Contrary to early hematologists, modern hematologists recognize that alterations in the components of blood are the *result* of disease, not a *primary cause* of it. Under normal conditions, the production of blood cells in the bone marrow, their release to the peripheral blood, and their survival are highly regulated to maintain a steady state of morphologically normal cells. Quantitative and qualitative hematologic abnormalities can result when an imbalance occurs in this steady state.

Composition of Blood

Blood is composed of a liquid called **plasma** and of cellular elements, including leukocytes, platelets, and erythrocytes. After blood coagulates, the resulting liquid component is called **serum**. The normal adult has about 6 liters of this vital fluid, which composes from 7% to 8% of the total body weight. Plasma makes up about 55% of the blood volume; about 45% of the volume is composed of erythrocytes, and 1% of the volume is composed of leukocytes and platelets. Variations in the quantity of these blood elements are often the first sign of disease occurring in body tissues. Changes in diseased tissue may be detected by laboratory tests that measure deviations from normal in blood constituents. Hematology is primarily the study of the formed cellular elements of the blood.

The principal component of plasma is water, which contains dissolved ions, proteins, carbohydrates, fats, hormones, vitamins, and enzymes. The principal ions necessary for normal cell function include calcium, sodium, potassium, chloride, magnesium, and hydrogen. The main protein constituent of plasma is albumin, which is the most important component in maintaining osmotic pressure. Albumin also acts as a carrier molecule, transporting compounds such as bilirubin and heme. Other blood proteins carry vitamins, minerals, and lipids. Immunoglobulins, synthesized by lymphocytes, and complement are specialized blood proteins involved in immune defense. The coagulation proteins responsible for hemostasis (arrest of bleeding) circulate in the blood as inactive enzymes until they are needed for the coagulation process. An upset in the balance of these dissolved plasma constituents can indicate a disease in other body tissues.

Blood plasma also acts as a transport medium for cell nutrients and metabolites; for example, the blood transports hormones manufactured in one tissue to target tissue in other parts of the body. Albumin transports bilirubin, the main catabolic residue of hemoglobin, from the spleen to the liver for excretion. Blood urea nitrogen, a nitrogenous waste product, is carried to the kidneys for filtration and excretion. Increased concentration of these normal catabolites can indicate either increased cellular metabolism or a defect in the organ responsible for their excretion. For example, in liver disease, the bilirubin level in blood increases because the liver is unable to function normally and clear the bilirubin. In hemolytic anemia, however, the bilirubin concentration can rise because of the increased metabolism of hemoglobin that exceeds the ability of a normal liver to clear bilirubin.

When body cells die, they release their cellular constituents into surrounding tissue. Eventually, some of these constituents reach the blood. Many constituents of body cells are specific for the cell's particular function; thus, increased concentration of these constituents in the blood, especially enzymes, can indicate an abnormal increase in cell destruction in a specific organ.

Blood cells are produced and develop in the bone marrow. This process is known as **hematopoiesis**. Undifferentiated hematopoietic stem cells (precursor cells) proliferate and differentiate under the influence of proteins that affect their function (cytokines). When the cell reaches maturity, it is released into the peripheral blood.

Each of the three cellular constituents of blood has specific functions. Erythrocytes contain the vital protein hemoglobin, which is responsible for transport of oxygen from the lungs to the body tissues. Erythrocytes also facilitate the transport of carbon dioxide from the tissues back to the lungs. The five major types of leukocytes are neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Each type of leukocyte has a role in defending the body against foreign pathogens such as bacteria and viruses. Platelets are necessary for maintaining hemostasis. Blood cells circulate through blood vessels, which are distributed throughout every body tissue. Erythrocytes and platelets generally carry out their functions without leaving the vessels, but leukocytes diapedese (pass through intact vessel walls) to tissues where they defend against invading foreign pathogens.

CASE STUDY (continued from page 3)

1. If Aaron was diagnosed with otitis media, what cellular component(s) in his blood would be playing a central role in fighting this infection?

Reference Intervals for Blood Cell Concentration

Physiologic differences in the concentration of cellular elements can occur according to race, age, sex, and geographic location; pathologic changes in specific blood cell concentrations can occur as the result of disease or injury. The greatest differences in reference intervals occur between newborns and adults. In general, newborns have a higher erythrocyte concentration than any other age group. The erythrocytes are also larger than those of adults. In the 6 months after birth, erythrocytes gradually decrease in number and then slowly increase. Hemoglobin and erythrocyte counts increase in children between the ages of 5 and 17. The leukocyte concentration is high at birth but decreases after the first year of life. A common finding in young children is an absolute and relative lymphocytosis (increase in lymphocytes). After puberty, males have higher hemoglobin, hematocrit (packed red blood cell volume in whole blood), and erythrocyte levels than females. The hemoglobin level decreases slightly after age 70 in males. This is thought to be due to the decrease in testosterone. Appendix D, Tables A through J give hematologic reference intervals for various age groups and by sex if appropriate.

Each individual laboratory must determine reference intervals of hematologic values to account for the physiologic differences of a population in a specific geographical area. Reference intervals for a hematologic parameter are determined by calculating the mean ± 2 standard deviations for a group of healthy individuals. This interval represents the reference interval for 95% of normal individuals. A value just below or just above this interval is not necessarily abnormal; normal and abnormal overlap. Statistical probability indicates that about 5% of normal individuals will fall outside the ± 2 standard deviation range. The further a value falls from the reference interval, however, the more likely the value is to be abnormal.

CASE STUDY (continued from page 4)

Aaron's physician ordered a complete blood count (CBC). The results are Hb 11.5 g/dL; Hct 34%.

2. What parameters, if any, are outside the reference intervals? Why do you have to take Aaron's age into account when evaluating these results?

Hemostasis

Hemostasis is the property of the circulation that maintains blood as a fluid within the blood vessels and the system's ability to form a barrier (blood clot or thrombus) to prevent excessive blood loss when the vessel is traumatized, limit the barrier to the site of injury, and dissolve the thrombus to ensure normal blood flow when the vessel is repaired. Hemostasis occurs in stages called *primary* and *secondary hemostasis* and *fibrinolysis* (breakdown of fibrin). These stages are the result of interaction of platelets, blood vessels, and proteins circulating in the blood. An upset in any of the stages can result in bleeding or abnormal blood clotting (thrombosis). Laboratory testing for abnormalities in hemostasis is usually performed in the hematology section of the laboratory; occasionally, hemostasis testing is performed in a separate specialized section of the laboratory.

Checkpoint 1.1

What cellular component of blood can be involved in disorders of hemostasis?

Blood Component Therapy

Blood components can be used in therapy for various hematologic and nonhematologic disorders. Whole blood collected from donors can be separated into various cellular and fluid components. Only the specific blood component (i.e., platelets for thrombocytopenia or erythrocytes for anemia) needed by the patient will be administered. In addition, the components can be specially prepared for the patient's specific needs (i.e., washed erythrocytes for patients with IgA deficiency to reduce the risk of anaphylactic reactions). Table 1-1 lists the various components that can be prepared for specific uses.

Table 1.1	Blood Components and Their Uses
-----------	---------------------------------

Component Name	Composition	Primary Use
Whole blood	Red blood cells and plasma	Not used routinely; can be used in selected trauma, autologous transfusions, and neonatal situations; increases oxygen-carrying capacity and volume
Packed red blood cells (PRBCs)	PRBCs	Used in individuals with symptomatic anemia to increase oxygen-carrying capability
PRBCs, washed	PRBCs; plasma with most leukocytes and platelets removed	Used for individuals with repeated allergic reactions to components containing plasma and for IgA-deficient individuals with anaphylactic reactions to products containing plasma
PRBCs, leukoreduced	PRBCs; WBC removed	Used to decrease the risk of febrile nonhemolytic transfusion reaction, HLA sensitization, and cytomegalovirus (CMV) transmission
PRBCs, frozen, deglycerolized	PRBCs frozen in cryroprotective agent, thawed, washed	Used for individuals with rare blood groups (autologous donation)
PRBCs, irradiated	PRBCs with lymphocytes inactivated	Used to reduce the risk of graft-versus-host disease
Platelets, pooled ^a	4–6 units of random donor platelets	Used to increase platelet count and decrease bleeding when there is a deficiency or abnormal function of platelets
Platelets, single ^a donor (pheresis)	Equivalent of 4–6 donor platelets collected from single donor	Used to treat patients refractory to random platelet transfusion or to increase platelet count due to a deficiency or abnormal function of platelets
PRBCs, frozen, deglycerolized PRBCs, irradiated Platelets, pooled ^a	PRBCs frozen in cryroprotective agent, thawed, washed PRBCs with lymphocytes inactivated 4–6 units of random donor platelets Equivalent of 4–6 donor platelets	Used to decrease the risk of febrile nonhemolytic transfusion HLA sensitization, and cytomegalovirus (CMV) transmission Used for individuals with rare blood groups (autologous dona Used to reduce the risk of graft-versus-host disease Used to increase platelet count and decrease bleeding when deficiency or abnormal function of platelets Used to treat patients refractory to random platelet transfusion

Ta	ble	1.1	Blood Components and Their Uses (Continued)	
----	-----	-----	-----------------------------------	------------	--

Component Name	Composition	Primary Use
Fresh frozen plasma (FFP)	Plasma with all stable and labile coag- ulation factors; frozen within 8 hours of collection of unit of blood	Used to treat patients with multiple coagulation factor deficiencies; disseminated intravascular coagulation (DIC); used with packed RBC in multiple transfusions
Cryoprecipitated AHF ^b	Concentrated FVIII, fibrinogen, FXIII, von Willebrand factor	Used to treat patients with hypofibrinogenemia, hemophilia A, von Willebrand's disease, FXIII deficiency
Plasma, cryo-poor	Plasma remaining after cryo removed	Used to treat thrombotic thrombocytopenic purpura (TTP)
Liquid plasma	Plasma not frozen within 8 hours of collection	Used in patients with deficiency of stable coagulation factor(s) and for volume replacement
Granulocytes	Granulocytes	Used to treat the neutropenic patient who is septic and unresponsive to antimicrobials and who has chance of marrow recovery

^a Platelets can also be leukoreduced or irradiated. See PRBC for reasons.

^b Cryoprecipitated antihemophilic factor.

Courtesy of Linda Smith, Ph.D., MLS(ASCP)^{CM}; adapted from the *circular of information for the use of human blood and blood components*. Prepared jointly by the American Association of Blood Banks, America's Blood Centers, and the American Red Cross (2002).

Investigation of a Hematologic Problem

Laboratory testing is divided into three components: preexamination, examination, and post-examination (formerly known as preanalytical, analytical, postanalytical). The *preexamination* component includes all aspects that occur prior to the testing procedure that affect the test outcome such as phlebotomy technique and transport and storage of the specimen after it is drawn but before the test is run. The *examination phase* refers to all aspects affecting the test procedure. The *post-examination* component includes all aspects after the testing is completed such as reporting of results and execution of appropriate clinical responses. These three aspects of testing are the backbone of a quality assessment program. See Chapters 10 and 43 for a detailed description of these three phases.

A physician's investigation of a hematologic problem includes taking a medical history and performing a physical examination. Clues provided by this preliminary investigation help guide the physician's choice of laboratory tests to help confirm the diagnosis. The challenge is to select appropriate tests that contribute to a cost-effective and efficient diagnosis. Laboratory testing usually begins with screening tests; based on results of these tests, more specific tests are ordered. The same tests can be ordered again on follow-up to track disease progression, evaluate treatment, identify side effects and complications, or assist in prognosis.

Hematology screening tests include the **complete blood count (CBC)**, which quantifies the WBCs, RBCs, hemoglobin, hematocrit, and platelets, and the **RBC indices** (Chapter 10). The indices are calculated from the results of the hemoglobin, RBC count, and hematocrit to define the size and hemoglobin content of RBCs. The indices are important parameters used to differentiate causes of anemia and help direct further testing. The CBC can also include a WBC differential. This procedure enumerates the five types of WBCs and reports each as a percentage of the total WBC count. A differential is especially helpful if the WBC count is abnormal. When the count is abnormal, the differential identifies which cell type is abnormally increased or decreased and determines whether immature and/or abnormal forms are present, thus providing a clue to diagnosis. The morphology of RBCs and platelets is also studied as a routine part of the differential and reported if abnormal. The assessment of RBC morphology can provide key information to a differential diagnosis and help guide the selection of additional tests for a definitive diagnosis.³

If a hemostasis problem is suspected, the screening tests include the platelet count, **prothrombin time (PT)**, and **activated partial thromboplastin time (APTT)** (Chapter 36). The PT and APTT tests involve adding calcium and thromboplastin or partial thromboplastin to a sample of citrated plasma and determining the time it takes to form a clot. These tests provide clues that guide the choice of follow-up tests to help identify the problem.

The Value of Laboratory Testing

The "value agenda" of health care advocates is achieving the best outcomes at minimal cost without sacrificing quality.⁴ In 2011, the Centers for Medicare and Medicaid Services (CMS) announced a reimbursement model intended to increase the accountability for achieving the best patient outcomes at minimal cost without sacrificing quality of care.⁵ The focus is on population health management versus a fee for service based on volume. By 2014, 20% of Medicare reimbursement shifted to value-based payment models that directly link reimbursement to the health and well-being of patients. The goal is to have 50% of Medicare payments in these value-based payment models by 2018. The laboratory can play a major role in creating and advancing the value agenda by improving clinical outcomes through the use of appropriate laboratory testing while helping payers hold down costs (economic outcomes).

Follow-up testing that is done based on results of screening tests is referred to as reflex testing. These testing protocols are sometimes referred to as *algorithms*. Follow-up tests can include not only hematologic tests but also chemical, immunologic, microbiologic, and/ or molecular analysis. As scientists learn more about the pathophysiology and treatment of hematologic disease and hemostasis, the number of tests designed to assist in diagnosis expands and, without testing guidelines, the cost can increase due to inappropriate and unnecessary test selection. Errors in selection of the most appropriate laboratory tests and interpretation of results can result in misdiagnosis or treatment errors and is a major source of poor patient outcomes. Laboratory professionals can assist in promoting good patient outcomes by assisting physicians and patient care teams in selecting the most efficient and effective testing strategies^{6,7,8} through development of test ordering protocols and assisting in interpretation of test results.9 Furthermore, validation studies of algorithms may help determine if a particular testing protocol is better

than others in helping diagnose or follow effectiveness of treatment. Readers are urged to use the reflex testing and algorithm concepts in their thought processes when studying the laboratory investigation of a disease.

In an effort to help the student gain the knowledge to perform these functions, in this text each hematologic disorder is discussed in the following order: etiology, if known, pathophysiology, clinical presentation, laboratory evaluation, and therapy. The reader should consider which laboratory tests provide the information necessary to identify the cause of the disorder based on the suspected disorder's pathophysiology. Although it is unusual for the physician to provide a patient history or diagnosis to the laboratory when ordering tests, this information is often crucial to direct investigation and assist in interpretation of the test results. In any case, if laboratory professionals need more patient information to appropriately perform testing, they should obtain the patient's chart or call the physician.

Checkpoint 1.2

A 13-year-old female saw her physician for complaints of a sore throat, lethargy, and swollen lymph nodes. A CBC was performed with the following results: Hb 9.0 g/dL; Hct 30%; WBC $15 \times 10^3/mcL$. On the basis of these results, should reflex testing be performed?

Summary

Hematology is the study of the cellular components of blood: erythrocytes, leukocytes, and platelets. Physiological changes in the concentrations of these cells occur from infancy until adulthood. Diseases can upset the steady state concentration of these parameters. A CBC is usually performed as a screening test to determine whether there are quantitative abnormalities in blood cells. The physician

can order reflex tests if one or more of the CBC parameters are outside the reference interval. Platelet count, PT, and APTT are screening tests for disorders of hemostasis.

Changes in the health care system focus on containing costs while maintaining quality of care. The laboratory's role in this system is to work with physicians to optimize utilization of laboratory testing.

Review Questions

Level I and Level II

- In which group of individuals would you expect to find the highest reference intervals for hemoglobin, hematocrit, and erythrocyte count? (Objective 1)
 - a. Newborns
 - **b.** Males older than 12 years of age
 - c. Females older than 17 years of age
 - d. Children between 1 and 5 years of age

- **2.** Which cells are important in transporting oxygen and carbon dioxide between the lungs and body tissues? (Objective 2)
 - a. Platelets
 - **b.** Leukocytes
 - c. Thrombocytes
 - d. Erythrocytes

- 8 Chapter 1
- **3.** Forty-five percent of the volume of blood is normally composed of: (Objective 3)
 - a. erythrocytes
 - b. leukocytes
 - c. platelets
 - d. plasma
- **4.** Alterations in the concentration of blood cells generally are the result of: (Objective 4)
 - a. laboratory error
 - b. amount of exercise before blood draw
 - c. a disease process
 - d. variations in analytical equipment
- **5.** Leukocytes are necessary for: (Objective 2)
 - a. hemostasis
 - **b.** defense against foreign pathogens
 - c. oxygen transport
 - d. excretion of cellular metabolites
- **6.** Laboratories can use which type of testing to help direct the physician's selection of appropriate testing after screening tests are performed? (Objective 5)
 - a. Reflexive based on results of screening tests
 - b. Manual repeat of abnormal results

- c. Second test by a different instrument
- d. Standing orders for all inpatients
- **7.** Screening tests used to evaluate the hemostasis system include: (Objective 6)
 - a. PT and APTT
 - b. CBC
 - c. hemoglobin
 - d. WBC count
- **8.** A patient blood specimen is stored in a car for 2 hours with the outside temperature of 95 °F. This is an example of error in which component of testing? (Objective 8)
 - a. Pre-examination
 - b. Examination
 - c. Post-examination
- **9.** The value of laboratory medicine can be increased by: (Objective 9)
 - a. providing raw data to payers when asked
 - **b.** prompting physicians to use a testing algorithm for anemia diagnosis
 - **c.** focusing on fee for service based on increasing testing volume.
 - d. not interfering with physician test ordering

References

- 1. Wintrobe, M. M. (1980). *Blood: Pure and eloquent*. New York: McGraw-Hill.
- 2. Vierordt, K. (1852). Zahlungen der Blutkorperchen des Menschen. *Archives of Physiology Heilk*, 11, 327.
- 3. Ford, J. (2013). Red blood cell morphology. *International Journal of Laboratory Hematology*, 35(3), 351–357.
- 4. Hillary, W., Justin, G. L., Bharat, M., & Jitendra, M. (2016). Value based healthcare. *Advances in Management*, 9(1), 1–8.
- 5. Center for Medicare and Medicaid Services (CMS). Department of Health and Human Services. Final Rule. (2011). Medicare program; Hospital inpatient value-based purchasing program. *Federal Register*, 76(88), 26489–26547.
- 6. Hernandez, J. S. (2003). Cost-effectiveness of laboratory testing. *Archives of Pathology and Laboratory Medicine*, 127, 440–445.
- 7. From, P., & Barak, M. (2012). Cessation of dipstick urinalysis reflex testing and physician ordering behavior. *American Journal of Clinical Pathology*, 137(3), 486–489.
- Feldman, L. S., Shihab, H. M., Thiemann, D., Yeh, H. C., Ardolino, M., Mandell, S., & Brotman, D. J. (2013). Impact of providing fee data on laboratory test ordering. *JAMA Internal Medicine*, 173(10), 903–908.
- Dighe, A. S., Makar, R. S., & Lewandrowski, K. B. (2007). Medicolegal liability in laboratory medicine. *Seminars in Diagnostic Pathology*, 24(2), 98–107.

^{Chapter 2} Cellular Homeostasis

Kristin Landis-Piwowar, PhD

Objectives—Level I

At the end of this unit of study, the student should be able to:

- **1.** Describe the location, morphology, and function of subcellular organelles of a cell.
- **2.** Describe the lipid asymmetry found in the plasma membrane of most hematopoietic cells.
- **3.** Differentiate DNA replication, transcription, translation, and DNA repair.
- **4.** Differentiate the parts of the mammalian cell cycle.

- **5.** Define R (*restriction point*) and its role in cell-cycle regulation.
- **6.** Define *apoptosis* and explain its role in normal human physiology.
- **7.** Classify and give examples of the major categories of initiators and inhibitors of apoptosis.
- **8.** List the major events regulated by apoptosis in hematopoiesis.

Objectives—Level II

At the end of this unit of study, the student should be able to:

- **1.** Explain the significance of SNPs, introns, exons, UTRs, and post-translational protein modifications.
- **2.** List the components and explain the function of the ubiquitin-proteasome system.
- **3.** Define *cyclins* and *Cdks* and their role in cell-cycle regulation; describe the associated Cdk partners and function of cyclins D, E, A, and B.
- **4.** Define the two major classes of CKIs (cyclin-dependent kinase inhibitors) and describe their function.
- **5.** Compare the function of cell-cycle checkpoints in cell-cycle regulation.
- **6.** Describe/illustrate the roles of p53 and pRb in cell-cycle regulation.
- **7.** Propose how abnormalities of cell-cycle regulatory mechanisms can lead to malignancy.